A Bäcklund transformation for L-isothermic surfaces

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2009 J. Phys. A: Math. Theor. 42404015
(http://iopscience.iop.org/1751-8121/42/40/404015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.155
The article was downloaded on 03/06/2010 at 08:12

Please note that terms and conditions apply.

A Bäcklund transformation for L-isothermic surfaces

C Rogers ${ }^{1,2}$ and A Szereszewski ${ }^{3}$
${ }^{1}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
${ }_{2}^{2}$ Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems, School of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia
${ }^{3}$ Institute of Theoretical Physics, University of Warsaw, Hoża 69, 00-681 Warsaw, Poland
E-mail: colinr@maths.unsw.edu.au and aszer@fuw.edu.pl

Received 31 December 2008, in final form 2 January 2009
Published 16 September 2009
Online at stacks.iop.org/JPhysA/42/404015

Abstract

It is established that a Bäcklund transformation for L-isothermic surfaces is associated with a Darboux transformation for a non-homogeneous linear Schrödinger equation. A Lax pair for L-isothermic surfaces is presented and it is shown that a quartet of eigenfunctions contained therein may be explicitly represented in terms of linearly independent solutions of a linear Schrödinger equation with a potential involving the Bäcklund parameter. A permutability theorem is presented whereby L-isothermic surfaces may be constructed and the action of the Bäcklund transformation on a class of generalized Dupin cyclides is considered.

PACS numbers: $02.40 . \mathrm{Hw}, 02.30 . \mathrm{Hq}, 02.30 . \mathrm{Jr}$

1. Introduction

The remarkable links that exist between the classical differential geometry of surfaces and modern soliton theory are well established (see e.g. [1]). The Bäcklund-Darboux transformations with their associated nonlinear superposition principles are notable in this connection [2]. Isothermic surfaces constitute an important sub-class of surfaces with a solitonic connection. They have been extensively studied by luminaries such as Bour [3], Darboux [4], Calapso [5] and Bianchi [6]. In more recent times, it has been established by Cieśliński et al $[7,8]$ that the classical Gauss-Mainardi-Codazzi system associated with isothermic surfaces is integrable in the modern solitonic sense. Indeed, a particular reduction of this isothermic system due to Calapso [5] may be shown to be linked to the zoomeron equation as set down in a solitonic context as a specialization of the matrix boomeron equation by Calogero and Degasperis [9-11]. The classical Bäcklund transformation for isothermic surfaces in \mathbb{R}^{3} was originally set down by Darboux [4] and was subsequently discussed in
detail by Bianchi [6]. Its formulation in terms of a matrix Darboux transformation is due to Cieśliński [7]. Bäcklund transformations and discrete analogues of isothermic surfaces in spaces of arbitrary dimension have been constructed by Schief [12]. Recently, in a study of integrable shell-membrane systems, a Láme-type equation was derived whereby a family of parallel L-isothermic surfaces could be constructed [13, 14]. It is remarked that parallel isothermic surfaces of the Dupin cyclide type arise naturally in liquid crystal theory [15] and are also of importance as offset geometries in computer-aided engineering design [16]. Here, we adopt the formulation of [14] to discuss the aspects of L-isothermic surfaces and, in particular, to generate L-isothermic surfaces via the action of a Bäcklund transformation on generalized Dupin cyclides.

2. Construction of L-isothermic surfaces via a linear Schrödinger equation

The Lie sphere geometry was introduced by Lie in 1872 [17]. Subsequently, important contributions to the Lie sphere geometry and its subgeometries (such as the Laguerre geometry) were made by Blaschke [18]. L-isothermic surfaces (surfaces with isothermic spherical representation) appear naturally in the context of Laguerre geometry. In recent years, Musso and Nicolodi studied the subject using Cartan's moving frame method [19-26].

In [14], parallel L-isothermic surfaces were constructed via solutions of a nonhomogeneous linear Schrödinger equation. Thus, let Σ be a two-dimensional surface parametrized in terms of curvature coordinates (α, β) and \mathbf{N} be a normal vector of Σ. The first and second fundamental forms are given by

$$
\begin{align*}
& \mathrm{I}=A_{1}^{2} \mathrm{~d} \alpha^{2}+A_{2}^{2} \mathrm{~d} \beta^{2} \tag{2.1}\\
& \mathrm{II}=\kappa_{1} A_{1}^{2} \mathrm{~d} \alpha^{2}+\kappa_{2} A_{2}^{2} \mathrm{~d} \beta^{2} \tag{2.2}
\end{align*}
$$

where κ_{1}, κ_{2} denote the principal curvatures. The condition that the surface Σ be L-isothermic is that its third fundamental form III $=\mathrm{d} \mathbf{N} \cdot \mathrm{d} \mathbf{N}^{4}$ be conformally flat in (α, β). Under the assumption that $A_{1} \kappa_{1}=A_{2} \kappa_{2}=-e^{\theta}$, we obtain

$$
\begin{equation*}
\mathrm{III}=e^{2 \theta}\left(\mathrm{~d} \alpha^{2}+\mathrm{d} \beta^{2}\right) \tag{2.3}
\end{equation*}
$$

The method of construction of the family of parallel L-isothermic surfaces involves a complex potential $\mathrm{U}(z)$, where $z=\alpha+\mathrm{i} \beta$, and a real function $P(\alpha, \beta)$ obeying the Moutard-type equation

$$
\begin{equation*}
P_{\alpha \beta}=2(\operatorname{Im} \mathrm{U}) P \tag{2.4}
\end{equation*}
$$

The construction can be summarized as follows.
Proposition 1. Let $\mathrm{U}(z)$ and P satisfy (2.4) and T_{0} be a real solution of the non-homogeneous linear Schrödinger equation:

$$
\begin{equation*}
T_{z z}+U T=\frac{1}{4} P \tag{2.5}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\mathbf{r}=e^{-\theta} b_{z} \mathbf{I}+e^{-\theta} b_{\overline{\mathbf{z}}} \overline{\mathbf{I}}+b \mathbf{N} \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{-\theta}=\frac{1}{2}\left(\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}\right) \tag{2.7}
\end{equation*}
$$

${ }^{4}$ The dot (\cdot) denotes the scalar product in the Euclidean space.

$$
\begin{equation*}
b=\frac{2 T_{0}}{\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}}+\mathfrak{b}, \quad \mathfrak{b} \in \mathbb{R} \tag{2.8}
\end{equation*}
$$

is the position vector of an L-isothermic surface. The unit tangent vectors \mathbf{X}, \mathbf{Y} and normal vector \mathbf{N} of the surface are expressed in terms of Φ_{1} and Φ_{2}, which are linearly independent solutions of a homogeneous version of (2.5) with the unit Wronskian, via the relations

$$
\begin{align*}
& \mathbf{I}=\mathbf{X}+i \mathbf{Y}=\frac{1}{\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}}\left(\begin{array}{c}
\Phi_{2}^{2}-\Phi_{1}^{2} \\
\mathrm{i}\left(\Phi_{1}^{2}+\Phi_{2}^{2}\right) \\
2 \Phi_{1} \Phi_{2}
\end{array}\right), \tag{2.9}\\
& \mathbf{N}=-\frac{1}{\left|\Phi_{1}\right|^{2}+\left|\Phi_{2}\right|^{2}}\left(\begin{array}{c}
\Phi_{1} \bar{\Phi}_{2}+\bar{\Phi}_{1} \Phi_{2} \\
\mathrm{i}\left(\bar{\Phi}_{1} \Phi_{2}-\Phi_{1} \bar{\Phi}_{2}\right) \\
\left|\Phi_{1}\right|^{2}-\left|\Phi_{2}\right|^{2}
\end{array}\right)
\end{align*}
$$

The coefficients of the first fundamental form (2.1) can be calculated from

$$
\begin{equation*}
P=A_{1}-A_{2}, \quad R=A_{1}+A_{2} \tag{2.10}
\end{equation*}
$$

where

$$
\begin{equation*}
R=4 e^{-\theta} b_{z \bar{z}}+2 e^{\theta} b \tag{2.11}
\end{equation*}
$$

If the position vector is known, then the potential U is given by

$$
\begin{equation*}
\mathrm{U}=-e^{\theta}\left(e^{-\theta}\right)_{z z} \tag{2.12}
\end{equation*}
$$

and Φ_{1}, Φ_{2} may be found via the relations

$$
\begin{align*}
& \Phi_{1}^{2}=-e^{-\theta}\left(I_{1}+\mathrm{i} I_{2}\right), \tag{2.13}\\
& \Phi_{2}^{2}=e^{-\theta}\left(I_{1}-\mathrm{i} I_{2}\right), \tag{2.14}
\end{align*}
$$

where $\mathbf{I}=\left(I_{1}, I_{2}, I_{3}\right)^{T} .{ }^{5}$
It has been shown in [27] that the above approach allows the construction of a Weierstrasstype representation of surfaces which are both L-isothermic and L-minimal. The position vector of such surfaces is given by [28]
$\mathbf{r}_{L}=\operatorname{Re}\left(\begin{array}{c}\int\left(-m_{1}+\left(m_{2}-\bar{m}_{2}\right) \rho+m_{3} \rho^{2}\right) F(\rho) \mathrm{d} \rho \\ \mathrm{i} \int\left(m_{1}+\left(m_{2}+\bar{m}_{2}\right) \rho+m_{3} \rho^{2}\right) F(\rho) \mathrm{d} \rho \\ \int\left(m_{2}+\left(m_{1}+m_{3}\right) \rho+\bar{m}_{2} \rho^{2}\right) F(\rho) \mathrm{d} \rho\end{array}\right)+\frac{\mathcal{H} / \mathcal{K}}{1+\rho \bar{\rho}}\left(\begin{array}{c}\rho+\bar{\rho} \\ \mathrm{i}(\rho-\bar{\rho}) \\ 1-\rho \bar{\rho}\end{array}\right)$.
where $m_{1}, m_{3} \in \mathbb{R}, m_{2} \in \mathbb{C}$,

$$
\begin{equation*}
\frac{\mathcal{H}}{\mathcal{K}}=-\operatorname{Re} \int\left(m_{2}-\left(m_{1}-m_{3}\right) \rho-\bar{m}_{2} \rho^{2}\right) F(\rho) \mathrm{d} \rho+\mu, \quad \mu \in \mathbb{R} \tag{2.16}
\end{equation*}
$$

and $F(\rho)$ is an arbitrary holomorphic function of ρ. The functions \mathcal{H} and \mathcal{K} denote the mean and Gauss curvature, respectively. The description of the L-isothermic surfaces via the potential equation (2.5) proves geometrically convenient and, in particular, appropriate transformations of T_{0}, and Φ_{1} and Φ_{2} correspond to Laguerre transformations [27].

[^0]
3. Bäcklund and Darboux transformations

The Bäcklund transformations for L-isothermic surfaces have been studied both by Bianchi [29] and Eisenhart [30]. The basic result is as follows.

Proposition 2 (A Bäcklund transformation for L-isothermic surfaces). Let \mathbf{r} be the position vector of an L-isothermic surface Σ. Then, a second L-isothermic surface $\tilde{\Sigma}$ is given by

$$
\begin{equation*}
\tilde{\mathbf{r}}=\mathbf{r}-\frac{\lambda}{m \sigma t}(\mu \mathbf{X}+\nu \mathbf{Y}+\sigma \mathbf{N}) \tag{3.1}
\end{equation*}
$$

where m is a real 'Bäcklund parameter' and $\lambda, \sigma, t, \mu, \nu$ are 'eigenfunctions' of the compatible linear system:

$$
\begin{align*}
& \left(\begin{array}{c}
\lambda \\
\sigma \\
t \\
\mu \\
\nu
\end{array}\right)_{\alpha}=\left(\begin{array}{ccccc}
0 & 0 & 0 & A_{1} & 0 \\
0 & 0 & 0 & e^{\theta} & 0 \\
0 & 0 & 0 & e^{-\theta} & 0 \\
0 & m e^{-\theta}-e^{\theta} & m e^{\theta} & 0 & -\theta_{\beta} \\
0 & 0 & 0 & \theta_{\beta} & 0
\end{array}\right)\left(\begin{array}{c}
\lambda \\
\sigma \\
t \\
\mu \\
\nu
\end{array}\right), \tag{3.2}\\
& \left(\begin{array}{c}
\lambda \\
\sigma \\
t \\
\mu \\
\nu
\end{array}\right)_{\beta}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & A_{2} \\
0 & 0 & 0 & 0 & e^{\theta} \\
0 & 0 & 0 & 0 & -e^{-\theta} \\
0 & 0 & 0 & 0 & \theta_{\alpha} \\
0 & -m e^{-\theta}-e^{\theta} & m e^{\theta} & -\theta_{\alpha} & 0
\end{array}\right)\left(\begin{array}{c}
\lambda \\
\sigma \\
t \\
\mu \\
\nu
\end{array}\right), \tag{3.3}
\end{align*}
$$

which satisfy the admissible constraint

$$
\begin{equation*}
\mu^{2}+v^{2}+\sigma^{2}=2 m \sigma t \tag{3.4}
\end{equation*}
$$

The transformation of the geometric quantities of Σ reads as

$$
\begin{align*}
& \tilde{A}_{1}=-A_{1}+\lambda\left(\frac{e^{\theta}}{\sigma}+\frac{e^{-\theta}}{t}\right) \tag{3.5}\\
& \tilde{A}_{2}=A_{2}-\lambda\left(\frac{e^{\theta}}{\sigma}-\frac{e^{-\theta}}{t}\right) \tag{3.6}\\
& e^{\tilde{\theta}}=\frac{\sigma}{t} e^{-\theta} \tag{3.7}
\end{align*}
$$

Here, this Bäcklund transformation is connected with the construction of L-isothermic surfaces via the potential U of the linear Schrödinger equation (2.5) by the following result.

Proposition 3. Let the complex function U be a potential associated with the L-isothermic surfaces Σ. The Bäcklund transformation of Σ corresponds to the Darboux transformation of potential U , namely

$$
\begin{equation*}
\tilde{\mathrm{U}}=\mathrm{U}+2(\log \hat{\sigma})_{z z} \tag{3.8}
\end{equation*}
$$

where the real function $\hat{\sigma}=2 e^{-\theta} \sigma$ satisfies

$$
\begin{equation*}
\hat{\sigma}_{z z}+U \hat{\sigma}=\frac{m}{2} \hat{\sigma} . \tag{3.9}
\end{equation*}
$$

The transformed solutions of $\Phi_{z z}+U \Phi=0$ read as

$$
\begin{align*}
& \tilde{\Phi}_{1}=\sqrt{\frac{2}{|m|}}\left(\Phi_{1 z}-(\log \hat{\sigma})_{z} \Phi_{1}\right) \operatorname{sgn}(m), \\
& \tilde{\Phi}_{2}=\sqrt{\frac{2}{|m|}}\left(\Phi_{2 z}-(\log \hat{\sigma})_{z} \Phi_{2}\right) . \tag{3.10}
\end{align*}
$$

Proof. It is readily shown that if σ is a solution of the system (3.2)-(3.3) then $\hat{\sigma}$, defined in proposition 3, satisfies the relations

$$
\begin{align*}
& \hat{\sigma}_{\alpha \alpha}-\hat{\sigma}_{\beta \beta}+e^{\theta}\left(\left(e^{-\theta}\right)_{\beta \beta}-\left(e^{-\theta}\right)_{\alpha \alpha}\right) \hat{\sigma}=2 m \hat{\sigma}, \tag{3.11}\\
& \hat{\sigma}_{\alpha \beta}=e^{\theta}\left(e^{-\theta}\right)_{\alpha \beta} \hat{\sigma} . \tag{3.12}
\end{align*}
$$

Hence, if $z=\alpha+\mathrm{i} \beta$, then (3.11) and (3.12) combine to produce (3.9). The transformed potential Ũ is defined by

$$
\begin{equation*}
\tilde{\mathrm{U}}=-e^{\tilde{\theta}}\left(e^{-\tilde{\theta}}\right)_{z z} \tag{3.13}
\end{equation*}
$$

and using (3.7) together with (3.2) and (3.3), it is verified that \tilde{U} satisfies relation (3.8). Formulae (3.10) constitute standard transforms of solutions associated with a Darboux transformation.

It turns out that solutions σ, t, μ, ν of the system (3.2)-(3.3) can be conveniently expressed in terms of Φ_{1}, Φ_{2} and linearly independent solutions φ_{1}, φ_{2} for

$$
\begin{equation*}
\varphi_{z z}+\left(\mathrm{U}-\frac{m}{2}\right) \varphi=0 \tag{3.14}
\end{equation*}
$$

This result is incorporated in the following.
Proposition 4. The solution $\{\sigma, t, \mu, \nu\}$ of the system (3.2)-(3.3) is given by

$$
\begin{align*}
\sigma & =\frac{1}{2}|S|^{2} e^{\theta} \tag{3.15}\\
t & =\frac{1}{2 m}|S|^{4}\left(\frac{1}{\sigma}\right)_{z \bar{z}} \tag{3.16}\\
\mu & =e^{-\theta} \sigma_{\alpha} \tag{3.17}\\
v & =e^{-\theta} \sigma_{\beta} \tag{3.18}
\end{align*}
$$

where

$$
\begin{equation*}
S=s_{1} \varphi_{1}+s_{2} \varphi_{2}, \quad s_{1}, s_{2} \in \mathbb{C} \tag{3.19}
\end{equation*}
$$

and functions φ_{1}, φ_{2} are two linearly independent solutions for (3.14) while θ is defined in (2.7).

Proof. In terms of $\hat{\sigma}$, as defined in proposition 3, the quadratic constraint (3.4) can be rewritten as

$$
\begin{equation*}
\mu^{2}+v^{2}+\sigma^{2}-2 m \sigma t=-2 e^{-2 \theta} \sigma^{2}(\log |\hat{\sigma}|)_{z \bar{z}}=0 \tag{3.20}
\end{equation*}
$$

Hence ${ }^{6}$,

$$
\begin{equation*}
\hat{\sigma}=S(z) \overline{S(z)} \tag{3.21}
\end{equation*}
$$

[^1]where $S(z)$ is a holomorphic function of z. Moreover, the real function $\hat{\sigma}$ satisfies (3.14). Therefore,
\[

$$
\begin{equation*}
S=s_{1} \varphi_{1}+s_{2} \varphi_{2}, \quad s_{1}, s_{2} \in \mathbb{C} \tag{3.22}
\end{equation*}
$$

\]

where φ_{1}, φ_{2} are two linearly independent solutions of (3.14). Accordingly, function σ is given by (3.15) and straightforward calculation shows that (3.16)-(3.18) satisfy the system (3.2)-(3.3).

It is noted that the equations for the eigenfunction λ, namely

$$
\begin{equation*}
\lambda_{\alpha}=A_{1} \mu, \quad \lambda_{\beta}=A_{2} v, \tag{3.23}
\end{equation*}
$$

can be treated separately from those for σ, t, μ, ν (cf (3.2) and (3.3)). Explicit integration for λ requires knowledge of the first fundamental form (2.1). It is also remarked that solution (3.16) for t can be rewritten in terms of transformed functions (3.10) in the following way:

$$
\begin{equation*}
t=\frac{1}{4}\left(\left|S \tilde{\Phi}_{1}\right|^{2}+\left|S \tilde{\Phi}_{2}\right|^{2}\right) \tag{3.24}
\end{equation*}
$$

4. A permutability theorem

Let \mathbf{r} be a position vector of an L-isothermic surface and \mathbf{r}_{1} and \mathbf{r}_{2} be two Bäcklund transforms of \mathbf{r} via $\mathbb{B}_{m_{1}}$ and $\mathbb{B}_{m_{2}}$, respectively. The following permutability theorem allows construction of a new L-isothermic surface from \mathbf{r}_{1} and \mathbf{r}_{2} in a purely algebraic manner.

Proposition 5. If \mathbf{r}_{1} and \mathbf{r}_{2} are two Bäcklund transforms of \mathbf{r}, then

$$
\mathbf{R}=\frac{\left|\begin{array}{ccc}
\mathbf{r} & \lambda_{1} & \lambda_{2} \tag{4.1}\\
\mathbf{r}_{1} & j_{1} & j_{3} \\
\mathbf{r}_{2} & j_{4} & j_{2}
\end{array}\right|}{\left|\begin{array}{ll}
j_{1} & j_{3} \\
j_{4} & j_{2}
\end{array}\right|}
$$

gives the position vector of a new L-isothermic surface, where

$$
\begin{array}{ll}
\mathbf{r}_{1}=\mu_{1} \mathbf{X}+v_{1} \mathbf{Y}+\sigma_{1} \mathbf{N}, & j_{1}=m_{1} \sigma_{1} t_{1}, \\
\mathbf{r}_{2}=\mu_{2} \mathbf{X}+v_{2} \mathbf{Y}+\sigma_{2} \mathbf{N}, & j_{2}=m_{2} \sigma_{2} t_{2}, \\
j_{3} & =\frac{m_{2}}{m_{2}-m_{1}}\left(\sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}+v_{1} v_{2}-m_{1}\left(\sigma_{1} t_{2}+\sigma_{2} t_{1}\right)\right), \\
j_{4} & =\frac{m_{1}}{m_{1}-m_{2}}\left(\sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}+v_{1} v_{2}-m_{2}\left(\sigma_{1} t_{2}+\sigma_{2} t_{1}\right)\right) \tag{4.5}
\end{array}
$$

and $\left\{\lambda_{1}, \sigma_{1}, t_{1}, \mu_{1}, \nu_{1}\right\}$ and $\left\{\lambda_{2}, \sigma_{2}, t_{2}, \mu_{2}, \nu_{2}\right\}$ are two sets of solutions for the system (3.2)(3.3) for m_{1} and $m_{2} \neq m_{1}$ respectively. The potential $\cup_{\mathbf{R}}$ which corresponds to \mathbf{R} reads as

$$
\begin{equation*}
\mathrm{U}_{\mathbf{R}}=\mathrm{U}+2 \partial_{z z} \log \left(S_{1} S_{2 z}-S_{1 z} S_{2}\right) \tag{4.6}
\end{equation*}
$$

where S_{1} and S_{2} satisfy

$$
\begin{align*}
& S_{1 z z}+\left(\mathrm{U}-\frac{m_{1}}{2}\right) S_{1}=0 \tag{4.7}\\
& S_{2 z z}+\left(\mathrm{U}-\frac{m_{2}}{2}\right) S_{2}=0 \tag{4.8}
\end{align*}
$$

Proof. A straightforward calculation shows that (4.1) is the L-isothermic surface corresponding to $\theta_{\mathbf{R}}$ given by

$$
\begin{equation*}
e^{-\theta_{\mathbf{R}}}=e^{-\theta}\left(1+\frac{\left(m_{2}-m_{1}\right)\left(\sigma_{1} t_{2}-\sigma_{2} t_{1}\right)}{\sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}+\nu_{1} \nu_{2}-m_{1} \sigma_{2} t_{1}-m_{2} \sigma_{1} t_{2}}\right) . \tag{4.9}
\end{equation*}
$$

The associated potential $\mathrm{U}_{\mathbf{R}}=-e^{\theta_{\mathbf{R}}}\left(e^{-\theta_{\mathbf{R}}}\right)_{z z}$ is given by

$$
\begin{equation*}
\mathrm{U}_{\mathbf{R}}=\mathrm{U}+2 \partial_{z z} \log \left(\sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}+\nu_{1} \nu_{2}-m_{1} \sigma_{2} t_{1}-m_{2} \sigma_{1} t_{2}\right), \tag{4.10}
\end{equation*}
$$

where on using (3.2) and (3.3), it is seen that

$$
\begin{align*}
\sigma_{1} \sigma_{2}+\mu_{1} \mu_{2}+v_{1} v_{2}-m_{1} \sigma_{2} t_{1}-m_{2} \sigma_{1} t_{2} & =\frac{1}{2}\left(\hat{\sigma}_{1 z} \hat{\sigma}_{2 \bar{z}}+\hat{\sigma}_{1 \bar{z}} \hat{\sigma}_{2 z}-\hat{\sigma}_{2} \hat{\sigma}_{1 z \bar{z}}-\hat{\sigma}_{1} \hat{\sigma}_{2 z \bar{z}}\right) \tag{4.11}\\
& =\frac{1}{2}\left(S_{1} S_{2 z}-S_{2} S_{1 z}\right)\left(\bar{S}_{2} \bar{S}_{1 \bar{z}}-\bar{S}_{1} \bar{S}_{2 \bar{z}}\right) \tag{4.12}
\end{align*}
$$

Here, we have used the fact that $\hat{\sigma}_{1}$ and $\hat{\sigma}_{2}$ satisfy (3.9) with m_{1} and m_{2} respectively.
It is remarked that the function θ obeys the Liouville equation. Indeed, this is the Gauss equation of the L-isothermic surface. Thus, $\theta_{\mathbf{R}}$ likewise satisfies a Liouville equation

$$
\begin{equation*}
\Delta \theta_{\mathbf{R}}+e^{2 \theta_{\mathbf{R}}}=0 \tag{4.13}
\end{equation*}
$$

where $\Delta=\partial_{\alpha \alpha}+\partial_{\beta \beta}$.

5. Illustration

Here, by way of illustration, we consider the action of the Bäcklund transformation on the generalized Dupin cyclides introduced in [14, 28]. These are L-isothermic canal surfaces:

$$
\mathbf{r}=e^{\theta}\left(\begin{array}{c}
\left(c_{0} F_{1}-\mathfrak{b}\right) \sin \alpha \tag{5.1}\\
-\left(c_{0} F_{1}-\mathfrak{b}\right) \sinh \beta \\
F_{1} \cosh \beta+\mathfrak{b}\left(c_{0} \cosh \beta-a_{0} \cos \alpha\right)
\end{array}\right)-\left(\begin{array}{c}
F_{2} \\
0 \\
0
\end{array}\right),
$$

where $a_{0}, c_{0}, \mathfrak{b}$ are real constants:

$$
\begin{align*}
& e^{-\theta}=a_{0} \cosh \beta-c_{0} \cos \alpha \tag{5.2}\\
& F_{1}(\alpha)=\int P(\alpha) \sin \alpha \mathrm{d} \alpha \tag{5.3}\\
& F_{2}(\alpha)=\int P(\alpha) \cos \alpha \mathrm{d} \alpha \tag{5.4}
\end{align*}
$$

$P(\alpha)$ is an arbitrary function and

$$
\begin{equation*}
a_{0}^{2}-c_{0}^{2}=1 \tag{5.5}
\end{equation*}
$$

The surface (5.1) can be constructed via the method described in proposition 1 with the specializations

$$
\begin{equation*}
\mathrm{U}=\frac{1}{4}, \quad P=P(\alpha) \tag{5.6}
\end{equation*}
$$

The relevant geometric quantities for (5.1) are set down in appendix A. From propositions 2 and 4, the Bäcklund transformation of the surface (5.1) is given by (3.1) where the functions σ, t, μ and ν are defined in terms of linearly independent solutions of

$$
\begin{equation*}
\varphi_{z z}+\left(\frac{1}{4}-\frac{m}{2}\right) \varphi=0 \tag{5.7}
\end{equation*}
$$

There are three cases depending on the value of constant m.

Case 1. $m<\frac{1}{2}, \quad m \neq 0, \quad k=\sqrt{1-2 m}$
In this case, $\varphi_{1}=\cos \left(\frac{k z}{2}\right), \varphi_{2}=\sin \left(\frac{k z}{2}\right)$ and, in a generic case,

$$
\begin{equation*}
|S|^{2}=2\left(\cosh \left(k \beta+\beta_{0}\right) \pm \cos \left(k \alpha+\alpha_{0}\right)\right) \tag{5.8}
\end{equation*}
$$

where $\alpha_{0}, \beta_{0} \in \mathbb{R}$. The irrelevant constant factor on the right-hand side of (5.8) has been omitted. Hence,
$\sigma=\frac{\cosh \left(k \beta+\beta_{0}\right)-\epsilon \cos \left(k \alpha+\alpha_{0}\right)}{a_{0} \cosh \beta-c_{0} \cos \alpha}$,
$\mu=\epsilon k \sin \left(k \alpha+\alpha_{0}\right)-c_{0} \sigma \sin \alpha$,
$\nu=k \sinh \left(k \beta+\beta_{0}\right)-a_{0} \sigma \sinh \beta$,
$t=a_{0}\left(\frac{1+k^{2}}{1-k^{2}} \cosh \beta \cosh \left(k \beta+\beta_{0}\right)-\frac{2 k}{1-k^{2}} \sinh \beta \sinh \left(k \beta+\beta_{0}\right)-\epsilon \cosh \beta \cos \left(k \alpha+\alpha_{0}\right)\right)$
$+c_{0}\left(\frac{\epsilon\left(1+k^{2}\right)}{k^{2}-1} \cos \alpha \cos \left(k \alpha+\alpha_{0}\right)+\frac{2 \epsilon k}{k^{2}-1} \sin \alpha \sin \left(k \alpha+\alpha_{0}\right)+\cos \alpha \cosh \left(k \beta+\beta_{0}\right)\right)$,
where $\alpha_{0}, \beta_{0} \in \mathbb{R}$ are constants of integration and $\epsilon= \pm 1$. Equations (3.23) may be integrated to obtain

$$
\begin{equation*}
\lambda=-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+\epsilon k \int P(\alpha) \sin \left(k \alpha+\alpha_{0}\right) \mathrm{d} \alpha \tag{5.13}
\end{equation*}
$$

In the special case, the solution adopts the form

$$
\begin{align*}
\sigma & =\frac{e^{\epsilon k \beta}}{a_{0} \cosh \beta-c_{0} \cos \alpha} \tag{5.14}\\
\mu & =-c_{0} \sigma \sin \alpha \tag{5.15}\\
\nu & =\epsilon k e^{\epsilon k \beta}-a_{0} \sigma \sinh \beta \tag{5.16}\\
t & =\frac{a_{0} e^{\epsilon k \beta}}{1-k^{2}}\left(\left(1+k^{2}\right) \cosh \beta-2 \epsilon k \sinh \beta\right)+c_{0} e^{\epsilon k \beta} \cos \alpha, \tag{5.17}
\end{align*}
$$

where $\epsilon= \pm 1$ and

$$
\begin{equation*}
\lambda=-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+\lambda_{0}, \quad \lambda_{0}=\text { const. } \tag{5.18}
\end{equation*}
$$

Case 2. $m=\frac{1}{2}$
In this case, $\varphi_{1}=1, \varphi_{2}=z$ and, in a generic case,

$$
\begin{equation*}
|S|^{2}=2\left(\left(\alpha+\alpha_{0}\right)^{2}+\left(\beta+\beta_{0}\right)^{2}\right) \tag{5.19}
\end{equation*}
$$

where $\alpha_{0}, \beta_{0} \in \mathbb{R}$. The irrelevant constant factor on the right-hand side of (5.19) has been omitted. Hence,
$\sigma=\frac{\left(\alpha+\alpha_{0}\right)^{2}+\left(\beta+\beta_{0}\right)^{2}}{a_{0} \cosh \beta-c_{0} \cos \alpha}$,
$\mu=2\left(\alpha+\alpha_{0}\right)-c_{0} \sigma \sin \alpha$,
$\nu=2\left(\beta+\beta_{0}\right)-a_{0} \sigma \sinh \beta$,

Figure 1. A surface for $c_{0}=\frac{3}{2}$ defined by (5.31).

$$
\begin{align*}
& t=a_{0}\left[\left(\left(\alpha+\alpha_{0}\right)^{2}+\left(\beta+\beta_{0}\right)^{2}+4\right) \cosh \beta-4\left(\beta+\beta_{0}\right) \sinh \beta\right] \tag{5.23}\\
&+c_{0}\left[\left(\left(\alpha+\alpha_{0}\right)^{2}+\left(\beta+\beta_{0}\right)^{2}-4\right) \cos \alpha-4\left(\alpha+\alpha_{0}\right) \sin \alpha\right] \tag{5.24}
\end{align*}
$$

where $\alpha_{0}, \beta_{0} \in \mathbb{R}$ are constants of integration. Equations (3.23) may be integrated to obtain

$$
\begin{equation*}
\lambda=-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+2 \int\left(\alpha+\alpha_{0}\right) P(\alpha) \mathrm{d} \alpha \tag{5.25}
\end{equation*}
$$

In the special case, the solution adopts the form

$$
\begin{align*}
\sigma & =\frac{1}{a_{0} \cosh \beta-c_{0} \cos \alpha} \tag{5.26}\\
\mu & =-c_{0} \sigma \sin \alpha \tag{5.27}\\
\nu & =-a_{0} \sigma \sinh \beta \tag{5.28}\\
t & =a_{0} \cosh \beta+c_{0} \cos \alpha \tag{5.29}\\
\lambda & =-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+\lambda_{0}, \quad \quad \lambda_{0}=\mathrm{const} \tag{5.30}
\end{align*}
$$

and a new surface is likewise the generalized Dupin cyclide.
Case 3. $m>\frac{1}{2}, k=\sqrt{2 m-1}$
The solution of the system (3.16)-(3.18) is given in appendix B.
Here, we consider the action of the Bäcklund transformation on the surface which is both L-isothermic and L-minimal, namely

$$
\begin{gathered}
\mathbf{r}=\frac{1}{2\left(a_{0} \cosh \beta-c_{0} \cos \alpha\right)}\left(\begin{array}{c}
-a_{0} \sin \alpha \cos \alpha \cosh \beta \\
c_{0} \cos ^{2} \alpha \sinh \beta \\
-\cos ^{2} \alpha \cosh \beta
\end{array}\right)+\frac{1}{4}\left(\begin{array}{c}
-2 \alpha \\
0 \\
a_{0}
\end{array}\right) \\
\alpha \in\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right], \quad-\infty<\beta<\infty
\end{gathered}
$$

The latter surface for $c_{0}=\frac{3}{2}$ is displayed in figure 1. Figures 2 and 3 illustrate the action of the Bäcklund transformation on (5.31) for the two cases: $m=\frac{3}{8}$ and $m=\frac{1}{2}$. It is interesting to note that the original seed surface (5.31) fits precisely into its Bäcklund transform (vide figure 4).

Figure 2. A Bäcklund transformation of the surface (5.31) with $c_{0}=\frac{3}{2}$ for $m=\frac{3}{8}, \epsilon=1, \alpha_{0}=$ $\frac{\pi}{2}, \beta_{0}=0$.

Figure 3. A Bäcklund transformation of the surface (5.31) with $c_{0}=\frac{3}{2}$ for $m=\frac{1}{2}, \alpha_{0}=$ $-\frac{3}{2} \pi, \beta_{0}=0$.

Figure 4. A seed surface (5.31) and its Bäcklund transform from figure 2.

Appendix A. The geometric quantities for generalized Dupin cyclides

The first, second and third fundamental forms for L-isothermic surfaces (5.1) read as

$$
\begin{align*}
& \mathrm{I}=\left(P(\alpha)-e^{\theta}\left(c_{0} F_{1}-\mathfrak{b}\right)\right)^{2} \mathrm{~d} \alpha^{2}+e^{2 \theta}\left(c_{0} F_{1}-\mathfrak{b}\right)^{2} \mathrm{~d} \beta^{2}, \tag{A.1}\\
& \mathrm{II}=e^{\theta}\left(e^{\theta}\left(c_{0} F_{1}-\mathfrak{b}\right)-P(\alpha)\right) \mathrm{d} \alpha^{2}+e^{2 \theta}\left(c_{0} F_{1}-\mathfrak{b}\right) \mathrm{d} \beta^{2}, \tag{A.2}\\
& \mathrm{III}=e^{2 \theta}\left(\mathrm{~d} \alpha^{2}+\mathrm{d} \beta^{2}\right), \tag{A.3}
\end{align*}
$$

where e^{θ} and F_{1} are defined in (5.2) and (5.3) respectively. The tangent vectors \mathbf{X}, \mathbf{Y} and the normal vector \mathbf{N} are given by

$$
\begin{gather*}
\mathbf{X}=e^{\theta}\left(\begin{array}{c}
c_{0}-a_{0} \cos \alpha \cosh \beta \\
-c_{0} \sin \alpha \sinh \beta \\
\sin \alpha \cosh \beta
\end{array}\right), \quad \mathbf{Y}=e^{\theta}\left(\begin{array}{c}
a_{0} \sin \alpha \sinh \beta \\
a_{0}-c_{0} \cos \alpha \cosh \beta \\
\cos \alpha \sinh \beta
\end{array}\right), \tag{A.4}\\
\mathbf{N}=-e^{\theta}\left(\begin{array}{c}
\sin \alpha \\
-\sinh \beta \\
a_{0} \cos \alpha-c_{0} \cosh \beta
\end{array}\right) . \tag{A.5}
\end{gather*}
$$

Appendix B

The solution of the system (3.16)-(3.18) for generalized Dupin cyclides (5.1) in the case $m>\frac{1}{2}$ is given in a generic case by $(\epsilon= \pm 1)$:
$\sigma=\frac{\cosh \left(k \alpha+\alpha_{0}\right)-\epsilon \cos \left(k \beta+\beta_{0}\right)}{a_{0} \cosh \beta-c_{0} \cos \alpha}$,
$\mu=k \sinh \left(k \alpha+\alpha_{0}\right)-c_{0} \sigma \sin \alpha$,
$\nu=\epsilon k \sin \left(k \beta+\beta_{0}\right)-a_{0} \sigma \sinh \beta$,
$t=a_{0}\left(\frac{\epsilon\left(k^{2}-1\right)}{1+k^{2}} \cosh \beta \cos \left(k \beta+\beta_{0}\right)-\frac{2 \epsilon k}{1+k^{2}} \sinh \beta \sin \left(k \beta+\beta_{0}\right)+\cosh \beta \cos \left(k \alpha+\alpha_{0}\right)\right)$
$+c_{0}\left(\frac{1-k^{2}}{k^{2}+1} \cos \alpha \cosh \left(k \alpha+\alpha_{0}\right)-\frac{2 k}{k^{2}+1} \sin \alpha \sinh \left(k \alpha+\alpha_{0}\right)-\epsilon \cos \alpha \cosh \left(k \beta+\beta_{0}\right)\right)$,
$\lambda=-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+k \int P(\alpha) \sinh \left(k \alpha+\alpha_{0}\right) \mathrm{d} \alpha$.
In the special case, the solution adopts the form

$$
\begin{align*}
\sigma & =\frac{e^{\epsilon k \alpha}}{a_{0} \cosh \beta-c_{0} \cos \alpha} \tag{B.1}\\
\mu & =\epsilon k e^{\epsilon k \alpha}-c_{0} \sigma \sin \alpha \tag{B.2}\\
\nu & =-a_{0} \sigma \sinh \beta \tag{B.3}\\
t & =a_{0} e^{\epsilon k \alpha} \cosh \beta+\frac{c_{0} e^{\epsilon k \alpha}}{1+k^{2}}\left(\left(1-k^{2}\right) \cos \alpha-2 \epsilon k \sin \alpha\right) \tag{B.4}\\
\lambda & =-\left(c_{0} F_{1}-\mathfrak{b}\right) \sigma+\epsilon k \int P(\alpha) e^{\epsilon k \alpha} \mathrm{~d} \alpha \tag{B.5}
\end{align*}
$$

where $\epsilon= \pm 1$. Here, a new surface is the generalized Dupin cyclide with

$$
\begin{equation*}
\tilde{P}(\alpha)=-P(\alpha)+2 \epsilon k e^{-\epsilon k \alpha} \int P(\alpha) e^{\epsilon k \alpha} \mathrm{~d} \alpha \tag{B.6}
\end{equation*}
$$

References

[1] Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory (Cambridge Texts in Applied Mathematics) (Cambridge: Cambridge University Press)
[2] Rogers C and Shadwick W F 1982 Bäcklund Transformations and Their Applications (New York: Academic)
[3] Bour E 1862 Theorie de la deformation des surfaces J. l'Ecole Imperiale Polytech. 19 (Cahier 39) 1-48
[4] Darboux G 1899 Sur les surfaces isothermiques C. R. Acad. Sci. 128 1299-305
[5] Calapso P 1903 Sulla superficie a linee di curvatura isoterme Rend. Circ. Mat. Palermo 17 275-86
[6] Bianchi L 1904 Ricerche sulle superficie isoterme e sulla deformazione delle quadriche Ann. Mat. 11 93-157
[7] Cieśliński J 1997 The Darboux-Bianchi transformation for isothermic surfaces. Classical results versus the solitonic approach Diff. Geom. Appl. 7 1-28
[8] Cieśliński J, Goldstein P and Sym A 1995 Isothermic surfaces in \mathbb{E}^{3} as soliton surfaces Phys. Lett. A 205 37-43
[9] Calogero F and Degasperis A 1976 Coupled nonlinear evolution equations solvable via the inverse spectral transform, and solitons that come back: the boomeron Lett. Nuovo Cimento 16 425-33
[10] Calogero F and Degasperis A 1976 A Bäcklund transformations, nonlinear superposition principle, multisoliton solutions and conserved quantities for the 'boomeron' nonlinear evolution equation Lett. Nuovo Cimento 16 434-8
[11] Degasperis A, Rogers C and Schief W K 2002 Isothermic surfaces generated via Darboux-Bäcklund transformations boomeron and zoomeron connections Stud. Appl. Math. 109 39-65
[12] Schief W K 2001 Isothermic surfaces in spaces of arbitrary dimension: integrability, discretization and Bäcklund transformations. A discrete Calapso equation Stud. Appl. Math. 106 85-137
[13] Rogers C and Schief W K 2003 On the equilibrium of shell membranes under normal loading. Hidden integrability Proc. R. Soc. A 459 2449-62
[14] Schief W K, Szereszewski A and Rogers C 2007 The Lamé equation in shell membrane theory J. Math. Phys. 48073510
[15] Schief W K, Kléman M and Rogers C 2005 On a nonlinear elastic shell system in liquid crystal theory: generalized Willmore surface and Dupin cyclides Proc. R. Soc. A 461 2817-37
[16] Martin R R, de Pont J and Sharock T J 1986 Cyclide surfaces in computer aided design The Mathematics of Surfaces ed J A Gregory (Oxford: Oxford University Press)
[17] Lie S 1872 Ueber Complexe, insbesondere Linien- und Kugel-Complexe, mit Anwendung auf die Theorie partieller Differential-Gleichungen Clebsch Ann. V 145-256
[18] Blaschke W 1929 Vorlesungen über Differentialgeometrie und Geometrische Grundlagen von Einsteins Relativitätstheorie: III. Differentialgeometrie der Kreise und Kugeln. Bearbeitet von G Thomsen (Berlin: Springer)
[19] Musso E and Nicolodi L 1995 L-minimal canal surfaces Rend. Mat. Appl., VII. Ser. 15 421-45
[20] Musso E and Nicolodi L 1999 On the equation defining isothermic surfaces in Laguerre geometry New Developments in Differential Geometry Proc. Conf. (Budapest) ed J Szenthe (Dordrecht: Kluwer) pp 285-94
[21] Musso E and Nicolodi L 1996 A variational problem for surfaces in Laguerre geometry Trans. Am. Math. Soc. 348 4321-37
[22] Musso E and Nicolodi L 1997 Isothermal surfaces in Laguerre geometry Boll. Unione Mat. Ital., VII. Ser. B 11 (Suppl.) 125-44
[23] Musso E and Nicolodi L 1999 Laguerre geometry of surfaces with plane lines of curvature Abh. Math. Semin. Univ. Hamb. 69 123-38
[24] Musso E and Nicolodi L 2000 The Bianchi-Darboux transform of L-isothermic surfaces Int. J. Math. 11 911-24
[25] Musso E and Nicolodi L 2005 On the Cauchy problem for the integrable system of Lie minimal surfaces J. Math. Phys. 46 113509-15
[26] Musso E and Nicolodi L 2006 Deformation and applicability of surfaces in Lie sphere geometry Tohoku Math. J. 58 161-87
[27] Szereszewski A 2009 L-isothermic and L-minimal surfaces J. Phys. A: Math. Theor. 42115203
[28] Schief W K, Szereszewski A and Rogers C 2009 On shell membranes of Enneper type J. Phys. A: Math. Theor. 42404016
[29] Bianchi L 1915 Sulla generazione, per rotolamento, delle superficie isoterme e delle superficie a rappresentazione isoterma delle linee di curvatura Rom. Acc. L. Rend. 24 377-87
[30] Eisenhart L P 1923 Transformations of Surfaces (Princeton, NJ: Princeton University Press)

[^0]: 5 The sign of $\Phi_{1} \Phi_{2}$ can be recovered from I_{3}.

[^1]: ${ }^{6} \hat{\sigma}$ is chosen to be positive without loss of generality

