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Abstract

It is established that a Bicklund transformation for L-isothermic surfaces
is associated with a Darboux transformation for a non-homogeneous linear
Schrodinger equation. A Lax pair for L-isothermic surfaces is presented and
it is shown that a quartet of eigenfunctions contained therein may be explicitly
represented in terms of linearly independent solutions of a linear Schrodinger
equation with a potential involving the Béacklund parameter. A permutability
theorem is presented whereby L-isothermic surfaces may be constructed and
the action of the Bicklund transformation on a class of generalized Dupin
cyclides is considered.

PACS numbers: 02.40.Hw, 02.30.Hq, 02.30.Jr

1. Introduction

The remarkable links that exist between the classical differential geometry of surfaces
and modern soliton theory are well established (see e.g. [1]). The Bicklund—Darboux
transformations with their associated nonlinear superposition principles are notable in this
connection [2]. Isothermic surfaces constitute an important sub-class of surfaces with a
solitonic connection. They have been extensively studied by luminaries such as Bour [3],
Darboux [4], Calapso [5] and Bianchi [6]. In more recent times, it has been established
by Ciesliniski et al [7, 8] that the classical Gauss—Mainardi—Codazzi system associated with
isothermic surfaces is integrable in the modern solitonic sense. Indeed, a particular reduction
of this isothermic system due to Calapso [5] may be shown to be linked to the zoomeron
equation as set down in a solitonic context as a specialization of the matrix boomeron equation
by Calogero and Degasperis [9—11]. The classical Biacklund transformation for isothermic
surfaces in R® was originally set down by Darboux [4] and was subsequently discussed in
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detail by Bianchi [6]. Its formulation in terms of a matrix Darboux transformation is due
to Ciesliniski [7]. Bécklund transformations and discrete analogues of isothermic surfaces
in spaces of arbitrary dimension have been constructed by Schief [12]. Recently, in a study
of integrable shell-membrane systems, a Lame-type equation was derived whereby a family
of parallel L-isothermic surfaces could be constructed [13, 14]. It is remarked that parallel
isothermic surfaces of the Dupin cyclide type arise naturally in liquid crystal theory [15]
and are also of importance as offset geometries in computer-aided engineering design [16].
Here, we adopt the formulation of [14] to discuss the aspects of L-isothermic surfaces and, in
particular, to generate L-isothermic surfaces via the action of a Bécklund transformation on
generalized Dupin cyclides.

2. Construction of L-isothermic surfaces via a linear Schrodinger equation

The Lie sphere geometry was introduced by Lie in 1872 [17]. Subsequently, important
contributions to the Lie sphere geometry and its subgeometries (such as the Laguerre geometry)
were made by Blaschke [18]. L-isothermic surfaces (surfaces with isothermic spherical
representation) appear naturally in the context of Laguerre geometry. In recent years, Musso
and Nicolodi studied the subject using Cartan’s moving frame method [19-26].

In [14], parallel L-isothermic surfaces were constructed via solutions of a non-
homogeneous linear Schrodinger equation. Thus, let ¥ be a two-dimensional surface
parametrized in terms of curvature coordinates (c, 8) and N be a normal vector of £. The
first and second fundamental forms are given by

I = A2do® + AdB?, (2.1
I = k) A2 do® + i, A2 dB?, (2.2)
where k1, k3 denote the principal curvatures. The condition that the surface ¥ be L-isothermic

is that its third fundamental form III = dN-dN* be conformally flat in (a, ). Under the
assumption that A k| = Ay, = —e?, we obtain

I = e* (do® + dB?). (2.3)

The method of construction of the family of parallel L-isothermic surfaces involves a complex
potential U(z), where z = o + i, and a real function P(«, ) obeying the Moutard-type
equation

Pyp =2(ImU) P. 2.4)

The construction can be summarized as follows.

Proposition 1. Let U(z) and P satisfy (2.4) and Ty be a real solution of the non-homogeneous
linear Schrodinger equation:

T..+UT = iP. (2.5)
Then,
r=e¢ b I+e?b:I+DN, (2.6)
where
1
e? = §<|d>1|2 +| D)%), Q2.7)

4 The dot (-) denotes the scalar product in the Euclidean space.
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is the position vector of an L-isothermic surface. The unit tangent vectors X, Y and normal
vector N of the surface are expressed in terms of ®, and ®,, which are linearly independent
solutions of a homogeneous version of (2.5) with the unit Wronskian, via the relations

. I
I=X+iY= W 1(39&:(1:1;2) ,
- - 2.9)
1 ?1 D) + Py qzz
AT AN
The coefficients of the first fundamental form (2.1) can be calculated from
P=A— A, R=A+A,, (2.10)
where
R =14¢"%b,:+2¢%. (2.11)
If the position vector is known, then the potential U is given by
U=—e(e?).. (2.12)
and @, ¥, may be found via the relations
O = —e (I +ih), (2.13)
®F=e (I —ih), (2.14)

where I = (I, b, I;)"

It has been shown in [27] that the above approach allows the construction of a Weierstrass-
type representation of surfaces which are both L-isothermic and L-minimal. The position
vector of such surfaces is given by [28]

J(=my + (my — m2)p +m3p*)F(p) dp p+p
rp =Re | if(mi+ (my+mx)p+m3p?)F(p)dp | + T 07 i(lo—p)|. (2.15)
[y + (my +m3)p + iz p?) F(p) dp PP\ 1 - pp

where m,m3; € R,m, € C,

H =2

EZ_RG (my — (my —m3z)p —map")F(p)dp + u, uweR, (2.16)
and F(p) is an arbitrary holomorphic function of p. The functions H and K denote the
mean and Gauss curvature, respectively. The description of the L-isothermic surfaces via
the potential equation (2.5) proves geometrically convenient and, in particular, appropriate

transformations of Ty, and ®; and &, correspond to Laguerre transformations [27].

5 The sign of ®;®, can be recovered from /3.
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3. Backlund and Darboux transformations

The Bécklund transformations for L-isothermic surfaces have been studied both by Bianchi
[29] and Eisenhart [30]. The basic result is as follows.

Proposition 2 (A Bicklund transformation for L-isothermic surfaces). Let r be the position
vector of an L-isothermic surface ¥. Then, a second L-isothermic surface X is given by

A
F=r— —(X+vY+0oN), (3.1)
mot

where m is a real ‘Bédcklund parameter’ and )., o, t, (., v are ‘eigenfunctions’ of the compatible
linear system:

A 0 0 0 A 0 A
o 0 0 0 e’ 0 o
t | =10 0 0 e¢? 0 t |, (3.2)
I 0 me?—¢® me? 0 —6g 7
v/, 0 0 0 6 0 v
A 0 0 0 0 Ay A
o 0 0 0 0 e’ o
t =10 0 0 0 —e’ t |, 3.3)
7 0 0 0 0 Oy %
v/, 0 —me?—¢® me? -6, 0 v
which satisfy the admissible constraint
w? +v2+ 0% =2mot. (3.4)
The transformation of the geometric quantities of X reads as
6 -6
A =—A,+k(e—+e—>, (3.5)
o t
0 -0
A2=A2—k<e——e—), (3.6)
o t
e =Ze ", (3.7)

Here, this Backlund transformation is connected with the construction of L-isothermic surfaces
via the potential U of the linear Schrédinger equation (2.5) by the following result.

Proposition 3. Let the complex function U be a potential associated with the L-isothermic
surfaces X. The Bdcklund transformation of ¥ corresponds to the Darboux transformation
of potential U, namely

U=U+2(ogé).., (3.8)
where the real function 6 = 2e %0 satisfies

6+ UG = —6. 3.9)

| 3
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The transformed solutions of ®,, + U® = 0 read as

2
\ 7 (@1 — (log &)@y ) sgn(m),
Im|
3 | 2 R
D, = _((DZZ - (IOg U)z®2)~
Im|

Proof. It is readily shown that if o is a solution of the system (3.2)—(3.3) then &, defined in
proposition 3, satisfies the relations

P,

(3.10)

6w — Gpp + " (™) pp — (67 ga)G = 2m6, (3.11)
Gup = €" (€ ")apb. (3.12)

Hence, if z = o + i, then (3.11) and (3.12) combine to produce (3.9). The transformed
potential U is defined by

U=—e(c?),. (3.13)

and using (3.7) together with (3.2) and (3.3), it is verified that U satisfies relation (3.8).
Formulae (3.10) constitute standard transforms of solutions associated with a Darboux
transformation. O

It turns out that solutions o, ¢, i, v of the system (3.2)—(3.3) can be conveniently expressed
in terms of ®;, @, and linearly independent solutions ¢, ¢, for

m
<pu+(U— 5)¢=0- (3.14)
This result is incorporated in the following.

Proposition 4. The solution {o, t, i, v} of the system (3.2)—(3.3) is given by

1
o= —I8)%, (3.15)
2
1. (1
t=—IS"{=) . (3.16)
2m o).
n=e ‘o, (3.17)
v=e"0p, (3.18)
where
S = 5101 + 5202, 51,8 € C, (3.19)

and functions ¢y, ¢ are two linearly independent solutions for (3.14) while 0 is defined in
(2.7).

Proof. In terms of &, as defined in proposition 3, the quadratic constraint (3.4) can be rewritten
as
p*+v?*+0% —2mot = —2¢ *o? (logl|6|),; = 0. (3.20)
Hence®,
6 =S8)S@), (3.21)

6 6 is chosen to be positive without loss of generality
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where S(z) is a holomorphic function of z. Moreover, the real function & satisfies (3.14).
Therefore,
S = 5191 + 5202, s1, 52 € C, (3.22)

where ¢, ¢, are two linearly independent solutions of (3.14). Accordingly, function o is
given by (3.15) and straightforward calculation shows that (3.16)—(3.18) satisfy the system
(3.2)—(3.3). |

It is noted that the equations for the eigenfunction A, namely
)"(x = A],LL, )\ﬂ = Az\), (323)

can be treated separately from those for o, 7, i, v (cf (3.2) and (3.3)). Explicit integration for
A requires knowledge of the first fundamental form (2.1). It is also remarked that solution
(3.16) for ¢ can be rewritten in terms of transformed functions (3.10) in the following way:

t= 108D > + 5D, ). (3.24)

4. A permutability theorem

Let r be a position vector of an L-isothermic surface and ry and r; be two Béicklund transforms
of r via B,,, and B,,,, respectively. The following permutability theorem allows construction
of a new L-isothermic surface from r; and r; in a purely algebraic manner.

Proposition 5. If r| and r; are two Béicklund transforms of r, then
r )\.1 )\2
g1 J3
.
R — 2.14.12 @1
Ji 3
Ja )2

gives the position vector of a new L-isothermic surface, where

ry =1 X+vY+oN, Jj1 =mjoity, “4.2)

I = I,L2X +1,Y + N, J2 = myosty, 4.3)

. ny

J3 = ———— (0102 + pi 2 + viv2 — my (o162 + 0aty)) 4.4)
myp —mq

. mi

Ja = ————— (0102 + k2 + ViV — ma(o1f2 + 0211)) 4.5)
mip —mp

and {\1, 01, t1, (1, v1} and {Ay, 02, by, 2, V2} are two sets of solutions for the system (3.2)—
(3.3) for my and my # m respectively. The potential Ur which corresponds to R reads
as

Ur = U +20;; log (S182; — S1:52) , (4.6)
where S| and S, satisfy
m
Sie + (u - 71) S =0, “.7)
my
oo + (U _ 7) S, = 0. 4.8)
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Proof. A straightforward calculation shows that (4.1) is the L-isothermic surface
corresponding to fg given by

o R (l N (my —my)(o1 — o211) ) . 4.9)

0102 + Wiy + V1V — M0zt — M0l

The associated potential Ug = —e® (e~%)__ is given by
Ur = U+ 20, log (0102 + ft142 + vivy — mioaty — myo1ty) , (4.10)

where on using (3.2) and (3.3), it is seen that

0102 + [L1[h2 + V1V — M0t — Mooty = 3(81.62: + 61262 — 62612 — 6162:2) (4.11)
= 3(8152 — 528105281z — 51 52). (4.12)
Here, we have used the fact that &, and &, satisfy (3.9) with m, and m, respectively. O

It is remarked that the function 6 obeys the Liouville equation. Indeed, this is the Gauss
equation of the L-isothermic surface. Thus, g likewise satisfies a Liouville equation

Abg + & =0, (4.13)
where A = 0,4 + 0pg.

5. Illustration

Here, by way of illustration, we consider the action of the Bicklund transformation on the
generalized Dupin cyclides introduced in [14, 28]. These are L-isothermic canal surfaces:

(coF1 — b) sina F
r=¢’ —(coFy — b)sinh B -1o0]. (5.1)
Fycosh B+ b(cocosh B — apcosa) 0
where ag, cq, b are real constants:
e’ =agcosh B — cycosa, 5.2)
Fi(ax) = / P(a)sina da, (5.3)
F(a) = / P(a)cosa da, 5.4)

P (@) is an arbitrary function and

ai—ci=1. (5.5)
The surface (5.1) can be constructed via the method described in proposition 1 with the
specializations

u=1, P =P(a). (5.6)
The relevant geometric quantities for (5.1) are set down in appendix A. From propositions 2

and 4, the Béacklund transformation of the surface (5.1) is given by (3.1) where the functions
o, t, u and v are defined in terms of linearly independent solutions of

1 m
Pzz Z_E ¢ =0. (5.7

There are three cases depending on the value of constant m.
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év m;é()’ k=\/1_2m

Casel. m < 5

In this case, ¢; = cos (%) , 2 = sin (’%) and, in a generic case,

|S|> = 2 (cosh(kB + Bo) =+ cos(ka + ), (5.8)

where «g, Bp € R. The irrelevant constant factor on the right-hand side of (5.8) has been
omitted. Hence,

o — cosh(kB + By) — € cos(ka + o)

5.9

apcosh B — cpcos (5-9)

= ek sin(ka + ag) — coo sin«, (5.10)
v = ksinh(kB + By) — apo sinh B, (5.11)

1+k? 2k
t=ay <ﬁ cosh g cosh(kB + By) — 152 sinh § sinh(kB + ) — € cosh B cos(ka +a0)>

<e(l+k2)
+oo | ———2

€
cos o cos(ko + +
a cos(ka + ap) 21

P sin ¢ sin(ko + «g) + cos o cosh(kf + ﬂo)> ,

(5.12)

where og, By € R are constants of integration and € = £1. Equations (3.23) may be integrated
to obtain

A= —(coFy —b)o + ek/ P () sin(ka + ag) do. (5.13)
In the special case, the solution adopts the form
ekp
o = ¢ , (5.14)
agcosh 8 — cpcosa
U = —cyo sina, (5.15)
v = eke™ — qyo sinh B, (5.16)
ape’ 2 . kB
t= 7 kz((l + k“) cosh B — 2¢k sinh B8) + cpe™” cos «, (5.17)
where ¢ = +1 and
A= —(coF — b)o + Ao, Ao = const. (5.18)

Case?2. m = %

In this case, ¢; = 1, ¢ = z and, in a generic case,
IS = 2((et + 20)* + (B + Bo)). (5.19)

where o, Bp € R. The irrelevant constant factor on the right-hand side of (5.19) has been
omitted. Hence,

_ (@+ag)?+ (B+ )

= , 5.20
apcosh B — ¢copcosa ( )
n=2(a+ay) — coo sina, (5.21)
v =2(B + By) — apo sinh B, (5.22)

8
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T

WA TV

Figure 1. A surface for ¢y = % defined by (5.31).

t = aol((a + ap)? + (B + Bo)> +4) cosh B — 4(B + Boy) sinh ] (5.23)
+col(( +ap)? + (B + Bo)* —4) cosa — 4(a + ap) sina], (5.24)

where oy, By € R are constants of integration. Equations (3.23) may be integrated to obtain
A= —(coF, —b)o+2 [(a + ap) P(a)da. (5.25)

In the special case, the solution adopts the form

1

- agcosh B — cycosa’ (5-26)
U = —coo sing, (5.27)
Vv = —apo sinh 3, (5.28)
t = agpcosh B + cypcosa, (5.29)
A= —(coF1 — b)o + Ao, Ao = const, (5.30)

and a new surface is likewise the generalized Dupin cyclide.
Case3. m > %,k:«/Zm -1
The solution of the system (3.16)—(3.18) is given in appendix B.

Here, we consider the action of the Bicklund transformation on the surface which is both
L-isothermic and L-minimal, namely

| —ap sin« cos & cosh —2u
2 .
r= co cos” o sinh 8 + = 0 , (5.31)
2(ap cosh B — ¢ cos ) —cos? o cosh B 4 a0
T 3w
ae|—,—|, —00 < B < o0.
22

The latter surface for ¢y = % is displayed in figure 1. Figures 2 and 3 illustrate the action of

the Bicklund transformation on (5.31) for the two cases: m = % and m = % It is interesting

to note that the original seed surface (5.31) fits precisely into its Biacklund transform (vide
figure 4).
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Figure 2. A Bécklund transformation of the surface (5.31) with ¢p = % form = %, e=1,a¢9 =
g
j, [30 = 0

Figure 3. A Bicklund transformation of the surface (5.31) with ¢9 = % for m = %, ay =
=37, Bo=0.

Figure 4. A seed surface (5.31) and its Backlund transform from figure 2.
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Appendix A. The geometric quantities for generalized Dupin cyclides

The first, second and third fundamental forms for L-isothermic surfaces (5.1) read as

= (P(a) — e’ (coFy — b))>da® + ¥ (coFy — b)>dp2, (A.1)
I = % (e’ (coFy — b) — P(@)) do® + €% (co Fy — b) dB?, (A.2)
III = % (do® + dp?), (A.3)

where e and F) are defined in (5.2) and (5.3) respectively. The tangent vectors X, Y and the
normal vector N are given by

co — ag cos o cosh B ap sin sinh 8
X =¢’ —cp sina sinh B , Y = ¢ | ag — ¢ cosa cosh B1, (A.4)
sina cosh cos « sinh g
sino
N=—¢ —sinh 8 ) (A.5)

apcosa — cogcosh B

Appendix B

The solution of the system (3.16)—(3.18) for generalized Dupin cyclides (5.1) in the case
m > % is given in a generic case by (¢ = %1):
_ cosh(ka + o) — € cos(kB + fo)

apcosh B — cocosa
i = k sinh(ka + ag) — cyo sina,
v = ek sin(kB + By) — apo sinh 3,

t -1 cosh 8 cos(kp + Bo) 2ek sinh § sin(kp + fo) + cosh § cos(kar + o)
. ek =1 _ si C (07 07
"\T1+R2 RN TYE ' 0

1 —k? 2k
+co (m cos a cosh(ka + ag) — 2.1 sin & sinh(ko + op) — € cos @ cosh(kB + ,30)) s

A=—(coF —b)o +k/ P () sinh(ka + o) de.

In the special case, the solution adopts the form

eeka
o= , (B.1)
apcosh B — cpcosa
= eke* — cyo sina, (B.2)
vV = —apo sinh 3, (B.3)
cka coet 2 .
t = ape™ cosh 8 + Tkz((l —k“)cosa — 2¢ksina), (B.4)
A= —(coF) — b)o + ek/ P()e* da, (B.3)

where € = +1. Here, a new surface is the generalized Dupin cyclide with

P(a) = —P() + 2eke / P(a)e*® da. (B.6)

11
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