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Abstract

It is established that a Bäcklund transformation for L-isothermic surfaces
is associated with a Darboux transformation for a non-homogeneous linear
Schrödinger equation. A Lax pair for L-isothermic surfaces is presented and
it is shown that a quartet of eigenfunctions contained therein may be explicitly
represented in terms of linearly independent solutions of a linear Schrödinger
equation with a potential involving the Bäcklund parameter. A permutability
theorem is presented whereby L-isothermic surfaces may be constructed and
the action of the Bäcklund transformation on a class of generalized Dupin
cyclides is considered.

PACS numbers: 02.40.Hw, 02.30.Hq, 02.30.Jr

1. Introduction

The remarkable links that exist between the classical differential geometry of surfaces
and modern soliton theory are well established (see e.g. [1]). The Bäcklund–Darboux
transformations with their associated nonlinear superposition principles are notable in this
connection [2]. Isothermic surfaces constitute an important sub-class of surfaces with a
solitonic connection. They have been extensively studied by luminaries such as Bour [3],
Darboux [4], Calapso [5] and Bianchi [6]. In more recent times, it has been established
by Cieśliński et al [7, 8] that the classical Gauss–Mainardi–Codazzi system associated with
isothermic surfaces is integrable in the modern solitonic sense. Indeed, a particular reduction
of this isothermic system due to Calapso [5] may be shown to be linked to the zoomeron
equation as set down in a solitonic context as a specialization of the matrix boomeron equation
by Calogero and Degasperis [9–11]. The classical Bäcklund transformation for isothermic
surfaces in R

3 was originally set down by Darboux [4] and was subsequently discussed in
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detail by Bianchi [6]. Its formulation in terms of a matrix Darboux transformation is due
to Cieśliński [7]. Bäcklund transformations and discrete analogues of isothermic surfaces
in spaces of arbitrary dimension have been constructed by Schief [12]. Recently, in a study
of integrable shell-membrane systems, a Láme-type equation was derived whereby a family
of parallel L-isothermic surfaces could be constructed [13, 14]. It is remarked that parallel
isothermic surfaces of the Dupin cyclide type arise naturally in liquid crystal theory [15]
and are also of importance as offset geometries in computer-aided engineering design [16].
Here, we adopt the formulation of [14] to discuss the aspects of L-isothermic surfaces and, in
particular, to generate L-isothermic surfaces via the action of a Bäcklund transformation on
generalized Dupin cyclides.

2. Construction of L-isothermic surfaces via a linear Schrödinger equation

The Lie sphere geometry was introduced by Lie in 1872 [17]. Subsequently, important
contributions to the Lie sphere geometry and its subgeometries (such as the Laguerre geometry)
were made by Blaschke [18]. L-isothermic surfaces (surfaces with isothermic spherical
representation) appear naturally in the context of Laguerre geometry. In recent years, Musso
and Nicolodi studied the subject using Cartan’s moving frame method [19–26].

In [14], parallel L-isothermic surfaces were constructed via solutions of a non-
homogeneous linear Schrödinger equation. Thus, let � be a two-dimensional surface
parametrized in terms of curvature coordinates (α, β) and N be a normal vector of �. The
first and second fundamental forms are given by

I = A2
1 dα2 + A2

2 dβ2, (2.1)

II = κ1A
2
1 dα2 + κ2A

2
2 dβ2, (2.2)

where κ1, κ2 denote the principal curvatures. The condition that the surface � be L-isothermic
is that its third fundamental form III = dN · dN4 be conformally flat in (α, β). Under the
assumption that A1κ1 = A2κ2 = −eθ , we obtain

III = e2θ (dα2 + dβ2). (2.3)

The method of construction of the family of parallel L-isothermic surfaces involves a complex
potential U(z), where z = α + iβ, and a real function P(α, β) obeying the Moutard-type
equation

Pαβ = 2(Im U)P . (2.4)

The construction can be summarized as follows.

Proposition 1. Let U(z) and P satisfy (2.4) and T0 be a real solution of the non-homogeneous
linear Schrödinger equation:

Tzz + UT = 1
4P. (2.5)

Then,

r = e−θbzI + e−θbz̄Ī + bN, (2.6)

where

e−θ = 1

2
(|�1|2 + |�2|2), (2.7)

4 The dot (·) denotes the scalar product in the Euclidean space.
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b = 2T0

|�1|2 + |�2|2 + b, b ∈ R, (2.8)

is the position vector of an L-isothermic surface. The unit tangent vectors X, Y and normal
vector N of the surface are expressed in terms of �1 and �2, which are linearly independent
solutions of a homogeneous version of (2.5) with the unit Wronskian, via the relations

I = X + iY = 1

|�1|2 + |�2|2

⎛
⎝ �2

2 − �2
1

i
(
�2

1 + �2
2

)
2�1�2

⎞
⎠ ,

N = − 1

|�1|2 + |�2|2

⎛
⎝ �1�̄2 + �̄1�2

i(�̄1�2 − �1�̄2)

|�1|2 − |�2|2

⎞
⎠ .

(2.9)

The coefficients of the first fundamental form (2.1) can be calculated from

P = A1 − A2, R = A1 + A2, (2.10)

where

R = 4e−θbzz̄ + 2eθb. (2.11)

If the position vector is known, then the potential U is given by

U = −eθ (e−θ )zz (2.12)

and �1,�2 may be found via the relations

�2
1 = −e−θ (I1 + i I2), (2.13)

�2
2 = e−θ (I1 − i I2), (2.14)

where I = (I1, I2, I3)
T .5

It has been shown in [27] that the above approach allows the construction of a Weierstrass-
type representation of surfaces which are both L-isothermic and L-minimal. The position
vector of such surfaces is given by [28]

rL = Re

⎛
⎝

∫
(−m1 + (m2 − m̄2)ρ + m3ρ

2)F (ρ) dρ

i
∫
(m1 + (m2 + m̄2)ρ + m3ρ

2)F (ρ) dρ∫
(m2 + (m1 + m3)ρ + m̄2ρ

2)F (ρ) dρ

⎞
⎠ +

H/K
1 + ρρ̄

⎛
⎝ ρ + ρ̄

i(ρ − ρ̄)

1 − ρρ̄

⎞
⎠ . (2.15)

where m1,m3 ∈ R,m2 ∈ C,

H
K

= −Re
∫

(m2 − (m1 − m3)ρ − m̄2ρ
2)F (ρ) dρ + μ, μ ∈ R, (2.16)

and F(ρ) is an arbitrary holomorphic function of ρ. The functions H and K denote the
mean and Gauss curvature, respectively. The description of the L-isothermic surfaces via
the potential equation (2.5) proves geometrically convenient and, in particular, appropriate
transformations of T0, and �1 and �2 correspond to Laguerre transformations [27].

5 The sign of �1�2 can be recovered from I3.
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3. Bäcklund and Darboux transformations

The Bäcklund transformations for L-isothermic surfaces have been studied both by Bianchi
[29] and Eisenhart [30]. The basic result is as follows.

Proposition 2 (A Bäcklund transformation for L-isothermic surfaces). Let r be the position
vector of an L-isothermic surface �. Then, a second L-isothermic surface �̃ is given by

r̃ = r − λ

mσt
(μX + νY + σN), (3.1)

where m is a real ‘Bäcklund parameter’ and λ, σ, t, μ, ν are ‘eigenfunctions’ of the compatible
linear system:

⎛
⎜⎜⎜⎜⎝

λ

σ

t

μ

ν

⎞
⎟⎟⎟⎟⎠

α

=

⎛
⎜⎜⎜⎜⎝

0 0 0 A1 0
0 0 0 eθ 0
0 0 0 e−θ 0
0 me−θ − eθ meθ 0 −θβ

0 0 0 θβ 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

λ

σ

t

μ

ν

⎞
⎟⎟⎟⎟⎠ , (3.2)

⎛
⎜⎜⎜⎜⎝

λ

σ

t

μ

ν

⎞
⎟⎟⎟⎟⎠

β

=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 A2

0 0 0 0 eθ

0 0 0 0 −e−θ

0 0 0 0 θα

0 −me−θ − eθ meθ −θα 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

λ

σ

t

μ

ν

⎞
⎟⎟⎟⎟⎠ , (3.3)

which satisfy the admissible constraint

μ2 + ν2 + σ 2 = 2mσt. (3.4)

The transformation of the geometric quantities of � reads as

Ã1 = −A1 + λ

(
eθ

σ
+

e−θ

t

)
, (3.5)

Ã2 = A2 − λ

(
eθ

σ
− e−θ

t

)
, (3.6)

eθ̃ = σ

t
e−θ . (3.7)

Here, this Bäcklund transformation is connected with the construction of L-isothermic surfaces
via the potential U of the linear Schrödinger equation (2.5) by the following result.

Proposition 3. Let the complex function U be a potential associated with the L-isothermic
surfaces �. The Bäcklund transformation of � corresponds to the Darboux transformation
of potential U, namely

Ũ = U + 2(log σ̂ )zz, (3.8)

where the real function σ̂ = 2e−θσ satisfies

σ̂zz + Uσ̂ = m

2
σ̂ . (3.9)

4
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The transformed solutions of �zz + U� = 0 read as

�̃1 =
√

2

|m| (�1z − (log σ̂ )z�1) sgn(m),

�̃2 =
√

2

|m| (�2z − (log σ̂ )z�2).

(3.10)

Proof. It is readily shown that if σ is a solution of the system (3.2)–(3.3) then σ̂ , defined in
proposition 3, satisfies the relations

σ̂αα − σ̂ββ + eθ ((e−θ )ββ − (e−θ )αα)σ̂ = 2mσ̂ , (3.11)

σ̂αβ = eθ (e−θ )αβ σ̂ . (3.12)

Hence, if z = α + iβ, then (3.11) and (3.12) combine to produce (3.9). The transformed
potential Ũ is defined by

Ũ = −eθ̃ (e−θ̃ )zz (3.13)

and using (3.7) together with (3.2) and (3.3), it is verified that Ũ satisfies relation (3.8).
Formulae (3.10) constitute standard transforms of solutions associated with a Darboux
transformation. �

It turns out that solutions σ, t, μ, ν of the system (3.2)–(3.3) can be conveniently expressed
in terms of �1,�2 and linearly independent solutions ϕ1, ϕ2 for

ϕzz +
(

U − m

2

)
ϕ = 0. (3.14)

This result is incorporated in the following.

Proposition 4. The solution {σ, t, μ, ν} of the system (3.2)–(3.3) is given by

σ = 1

2
|S|2eθ , (3.15)

t = 1

2m
|S|4

(
1

σ

)
zz̄

, (3.16)

μ = e−θσα, (3.17)

ν = e−θσβ, (3.18)

where

S = s1ϕ1 + s2ϕ2, s1, s2 ∈ C, (3.19)

and functions ϕ1, ϕ2 are two linearly independent solutions for (3.14) while θ is defined in
(2.7).

Proof. In terms of σ̂ , as defined in proposition 3, the quadratic constraint (3.4) can be rewritten
as

μ2 + ν2 + σ 2 − 2mσt = −2e−2θσ 2 (log|σ̂ |)zz̄ = 0. (3.20)

Hence6,

σ̂ = S(z)S(z), (3.21)

6 σ̂ is chosen to be positive without loss of generality

5
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where S(z) is a holomorphic function of z. Moreover, the real function σ̂ satisfies (3.14).
Therefore,

S = s1ϕ1 + s2ϕ2, s1, s2 ∈ C, (3.22)

where ϕ1, ϕ2 are two linearly independent solutions of (3.14). Accordingly, function σ is
given by (3.15) and straightforward calculation shows that (3.16)–(3.18) satisfy the system
(3.2)–(3.3). �

It is noted that the equations for the eigenfunction λ, namely

λα = A1μ, λβ = A2ν, (3.23)

can be treated separately from those for σ, t, μ, ν (cf (3.2) and (3.3)). Explicit integration for
λ requires knowledge of the first fundamental form (2.1). It is also remarked that solution
(3.16) for t can be rewritten in terms of transformed functions (3.10) in the following way:

t = 1
4 (|S�̃1|2 + |S�̃2|2). (3.24)

4. A permutability theorem

Let r be a position vector of an L-isothermic surface and r1 and r2 be two Bäcklund transforms
of r via Bm1 and Bm2 , respectively. The following permutability theorem allows construction
of a new L-isothermic surface from r1 and r2 in a purely algebraic manner.

Proposition 5. If r1 and r2 are two Bäcklund transforms of r, then

R =

∣∣∣∣∣∣
r λ1 λ2

r1 j1 j3

r2 j4 j2

∣∣∣∣∣∣∣∣∣∣j1 j3

j4 j2

∣∣∣∣
(4.1)

gives the position vector of a new L-isothermic surface, where

r1 = μ1X + ν1Y + σ1N, j1 = m1σ1t1, (4.2)

r2 = μ2X + ν2Y + σ2N, j2 = m2σ2t2, (4.3)

j3 = m2

m2 − m1
(σ1σ2 + μ1μ2 + ν1ν2 − m1(σ1t2 + σ2t1)) , (4.4)

j4 = m1

m1 − m2
(σ1σ2 + μ1μ2 + ν1ν2 − m2(σ1t2 + σ2t1)) . (4.5)

and {λ1, σ1, t1, μ1, ν1} and {λ2, σ2, t2, μ2, ν2} are two sets of solutions for the system (3.2)–
(3.3) for m1 and m2 �= m1 respectively. The potential UR which corresponds to R reads
as

UR = U + 2∂zz log (S1S2z − S1zS2) , (4.6)

where S1 and S2 satisfy

S1zz +
(

U − m1

2

)
S1 = 0, (4.7)

S2zz +
(

U − m2

2

)
S2 = 0. (4.8)

6
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Proof. A straightforward calculation shows that (4.1) is the L-isothermic surface
corresponding to θR given by

e−θR = e−θ

(
1 +

(m2 − m1)(σ1t2 − σ2t1)

σ1σ2 + μ1μ2 + ν1ν2 − m1σ2t1 − m2σ1t2

)
. (4.9)

The associated potential UR = −eθR(e−θR)zz is given by

UR = U + 2∂zz log (σ1σ2 + μ1μ2 + ν1ν2 − m1σ2t1 − m2σ1t2) , (4.10)

where on using (3.2) and (3.3), it is seen that

σ1σ2 + μ1μ2 + ν1ν2 − m1σ2t1 − m2σ1t2 = 1
2 (σ̂1zσ̂2z̄ + σ̂1z̄σ̂2z − σ̂2σ̂1zz̄ − σ̂1σ̂2zz̄) (4.11)

= 1
2 (S1S2z − S2S1z)(S̄2S̄1z̄ − S̄1S̄2z̄). (4.12)

Here, we have used the fact that σ̂1 and σ̂2 satisfy (3.9) with m1 and m2 respectively. �

It is remarked that the function θ obeys the Liouville equation. Indeed, this is the Gauss
equation of the L-isothermic surface. Thus, θR likewise satisfies a Liouville equation

�θR + e2θR = 0, (4.13)

where � = ∂αα + ∂ββ .

5. Illustration

Here, by way of illustration, we consider the action of the Bäcklund transformation on the
generalized Dupin cyclides introduced in [14, 28]. These are L-isothermic canal surfaces:

r = eθ

⎛
⎝ (c0F1 − b) sin α

−(c0F1 − b) sinh β

F1 cosh β + b(c0 cosh β − a0 cos α)

⎞
⎠ −

⎛
⎝F2

0
0

⎞
⎠ , (5.1)

where a0, c0, b are real constants:

e−θ = a0 cosh β − c0 cos α, (5.2)

F1(α) =
∫

P(α) sin α dα, (5.3)

F2(α) =
∫

P(α) cos α dα, (5.4)

P(α) is an arbitrary function and

a2
0 − c2

0 = 1. (5.5)

The surface (5.1) can be constructed via the method described in proposition 1 with the
specializations

U = 1
4 , P = P(α). (5.6)

The relevant geometric quantities for (5.1) are set down in appendix A. From propositions 2
and 4, the Bäcklund transformation of the surface (5.1) is given by (3.1) where the functions
σ, t, μ and ν are defined in terms of linearly independent solutions of

ϕzz +

(
1

4
− m

2

)
ϕ = 0. (5.7)

There are three cases depending on the value of constant m.

7
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Case 1. m < 1
2 , m �= 0, k = √

1 − 2m

In this case, ϕ1 = cos
(

kz
2

)
, ϕ2 = sin

(
kz
2

)
and, in a generic case,

|S|2 = 2 (cosh(kβ + β0) ± cos(kα + α0)) , (5.8)

where α0, β0 ∈ R. The irrelevant constant factor on the right-hand side of (5.8) has been
omitted. Hence,

σ = cosh(kβ + β0) − ε cos(kα + α0)

a0 cosh β − c0 cos α
, (5.9)

μ = εk sin(kα + α0) − c0σ sin α, (5.10)

ν = k sinh(kβ + β0) − a0σ sinh β, (5.11)

t = a0

(
1 + k2

1 − k2
cosh β cosh(kβ + β0)− 2k

1 − k2
sinh β sinh(kβ + β0)− ε cosh β cos(kα + α0)

)

+ c0

(
ε(1 + k2)

k2 − 1
cos α cos(kα + α0) +

2εk

k2 − 1
sin α sin(kα + α0) + cos α cosh(kβ + β0)

)
,

(5.12)

where α0, β0 ∈ R are constants of integration and ε = ±1. Equations (3.23) may be integrated
to obtain

λ = −(c0F1 − b)σ + εk

∫
P(α) sin(kα + α0) dα. (5.13)

In the special case, the solution adopts the form

σ = eεkβ

a0 cosh β − c0 cos α
, (5.14)

μ = −c0σ sin α, (5.15)

ν = εkeεkβ − a0σ sinh β, (5.16)

t = a0e
εkβ

1 − k2
((1 + k2) cosh β − 2εk sinh β) + c0e

εkβ cos α, (5.17)

where ε = ±1 and

λ = −(c0F1 − b)σ + λ0, λ0 = const. (5.18)

Case 2. m = 1
2

In this case, ϕ1 = 1, ϕ2 = z and, in a generic case,

|S|2 = 2((α + α0)
2 + (β + β0)

2), (5.19)

where α0, β0 ∈ R. The irrelevant constant factor on the right-hand side of (5.19) has been
omitted. Hence,

σ = (α + α0)
2 + (β + β0)

2

a0 cosh β − c0 cos α
, (5.20)

μ = 2(α + α0) − c0σ sin α, (5.21)

ν = 2(β + β0) − a0σ sinh β, (5.22)

8
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Figure 1. A surface for c0 = 3
2 defined by (5.31).

t = a0[((α + α0)
2 + (β + β0)

2 + 4) cosh β − 4(β + β0) sinh β] (5.23)

+ c0[((α + α0)
2 + (β + β0)

2 − 4) cos α − 4(α + α0) sin α], (5.24)

where α0, β0 ∈ R are constants of integration. Equations (3.23) may be integrated to obtain

λ = −(c0F1 − b)σ + 2
∫

(α + α0)P (α)dα. (5.25)

In the special case, the solution adopts the form

σ = 1

a0 cosh β − c0 cos α
, (5.26)

μ = −c0σ sin α, (5.27)

ν = −a0σ sinh β, (5.28)

t = a0 cosh β + c0 cos α, (5.29)

λ = −(c0F1 − b)σ + λ0, λ0 = const, (5.30)

and a new surface is likewise the generalized Dupin cyclide.

Case 3. m > 1
2 , k = √

2m − 1

The solution of the system (3.16)–(3.18) is given in appendix B.

Here, we consider the action of the Bäcklund transformation on the surface which is both
L-isothermic and L-minimal, namely

r = 1

2(a0 cosh β − c0 cos α)

⎛
⎝−a0 sin α cos α cosh β

c0 cos2 α sinh β

−cos2 α cosh β

⎞
⎠ +

1

4

⎛
⎝−2α

0
a0

⎞
⎠ , (5.31)

α ∈
[
π

2
,

3π

2

]
, −∞ < β < ∞.

The latter surface for c0 = 3
2 is displayed in figure 1. Figures 2 and 3 illustrate the action of

the Bäcklund transformation on (5.31) for the two cases: m = 3
8 and m = 1

2 . It is interesting
to note that the original seed surface (5.31) fits precisely into its Bäcklund transform (vide
figure 4).

9
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Figure 2. A Bäcklund transformation of the surface (5.31) with c0 = 3
2 for m = 3

8 , ε = 1, α0 =
π
2 , β0 = 0.

Figure 3. A Bäcklund transformation of the surface (5.31) with c0 = 3
2 for m = 1

2 , α0 =
− 3

2 π, β0 = 0.

Figure 4. A seed surface (5.31) and its Bäcklund transform from figure 2.

10
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Appendix A. The geometric quantities for generalized Dupin cyclides

The first, second and third fundamental forms for L-isothermic surfaces (5.1) read as

I = (P (α) − eθ (c0F1 − b))2 dα2 + e2θ (c0F1 − b)2 dβ2, (A.1)

II = eθ (eθ (c0F1 − b) − P(α)) dα2 + e2θ (c0F1 − b) dβ2, (A.2)

III = e2θ (dα2 + dβ2), (A.3)

where eθ and F1 are defined in (5.2) and (5.3) respectively. The tangent vectors X, Y and the
normal vector N are given by

X = eθ

⎛
⎝c0 − a0 cos α cosh β

−c0 sin α sinh β

sin α cosh β

⎞
⎠ , Y = eθ

⎛
⎝ a0 sin α sinh β

a0 − c0 cos α cosh β

cos α sinh β

⎞
⎠ , (A.4)

N = −eθ

⎛
⎝ sin α

−sinh β

a0 cos α − c0 cosh β

⎞
⎠ . (A.5)

Appendix B

The solution of the system (3.16)–(3.18) for generalized Dupin cyclides (5.1) in the case
m > 1

2 is given in a generic case by (ε = ±1):

σ = cosh(kα + α0) − ε cos(kβ + β0)

a0 cosh β − c0 cos α
,

μ = k sinh(kα + α0) − c0σ sin α,

ν = εk sin(kβ + β0) − a0σ sinh β,

t = a0

(
ε(k2 − 1)

1 + k2
cosh β cos(kβ + β0) − 2εk

1 + k2
sinh β sin(kβ + β0) + cosh β cos(kα + α0)

)

+ c0

(
1 − k2

k2 + 1
cos α cosh(kα + α0) − 2k

k2 + 1
sin α sinh(kα + α0) − ε cos α cosh(kβ + β0)

)
,

λ = − (c0F1 − b) σ + k

∫
P(α) sinh(kα + α0) dα.

In the special case, the solution adopts the form

σ = eεkα

a0 cosh β − c0 cos α
, (B.1)

μ = εkeεkα − c0σ sin α, (B.2)

ν = −a0σ sinh β, (B.3)

t = a0e
εkα cosh β +

c0e
εkα

1 + k2
((1 − k2) cos α − 2εk sin α), (B.4)

λ = −(c0F1 − b)σ + εk

∫
P(α)eεkα dα, (B.5)

where ε = ±1. Here, a new surface is the generalized Dupin cyclide with

P̃ (α) = −P(α) + 2εke−εkα

∫
P(α)eεkα dα. (B.6)
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